SYNTHESIS OF THE ACETATE OF (\pm) -2,6-DIMETHYLHEPTA-1,5-DIEN-3-OL – THE RACEMIC FORM OF THE SEX PHEROMONE OF Pseudococcus comstocki

V. L. Sorokin and O. G. Kulinkovich

UDC 547.512

4-Methylpent-3-enal has been synthesized by the dehydration of trans-2-(1-hydroxy-1methylethyl)-1-methoxycyclopropane, and this has been brought into reaction with propen-2-ylmagnesium bromide. Acetylation of the carbinol so formed gave the acetate of (+)-2,6-dimethylhepta-1,5-diene-3-ol — the racemic form of the sex pheromone of the Comstock mealybug.

The acetate of (+)-2,6-dimethylhepta-1,5-dien-3-ol possesses a high attraction action for males of <u>Pseudococcus comstocki</u> (Comstock mealybug) [1]. In its attractive capacity it is close to the natural pheromone - the acetate of (+)-2,6-dimethylhepta-1,5-dien-3-ol [2].

 (\pm) -2,6-Dimethylhepta-1,5-dien-3-ol has been obtained previously by several methods: by the epoxidation of 2,6-dimethylhepta-1,5-diene followed by reduction of the monoepoxide with aluminum isopropanolate [2], by the photochemical oxidation of 2,6-dimethylhepta-1,5-diene in the presence of tetrabutylammonium tetrahydroborate [3], by the rearrangement of 2,6-dimethyl-1-phenylsulfinylhepta-2,5-diene [4], and also by the reaction of isopentenyllithium and methacrolein [5].

The approach proposed in the present paper to the synthesis of the acetate of (\pm) -2,6dimethylhepta-1,5-dien-3-ol (I) is based on the use as key compound of trans-2-(1-hydroxy-1methylethyl)1-methoxycyclopropane (II), a method of obtaining which from readily available starting materials we have described in [6]. The cyclopropylcarbinyl homoallyl isomerization of carbinol (II) gave 4-methylpent-3-enal (III) [7], which was caused to react with propen-2ylmagnesium bromide. The yield of (\pm) -2,6-dimethylhepta-1,5-dien-3-ol (IV) in this reaction was 70%. Subsequent acetylation of the alcoholic group led to the desired product with a yield of 30%, calculated on the initial carbinol (II).

The structures of the (\pm) -2,6-dimethylhepta-1,5-dien-3-ol (IV) and its acetate (I) were confirmed by the correspondence of their physicochemical constants to those given in the literature, and also by their PMR spectra.

EXPERIMENTAL

PMR spectra were taken on a Tesla BS-467A spectrometer with a working frequency of 60 MHz using carbon tetrachloride as solvent; chemical shifts are given in the scale relative to the signal of TMS (internal standard).

Scientific-Research Institute of Physicochemical Problems, V. I. Lenin Belorussian University, Minsk. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 747-748, September-October, 1988. Original article submitted December 4, 1987. <u>4-Methylpent-3-enal (III)</u> was synthesized from 10 g of trans-2-(1-hydroxy-1-methylethyl)-1-methoxycyclopropane (II) and 50 ml of 0.25 N sulfuric acid by the procedure described in [7]. This gave 4.1 g of 4-methylpent-3-enal (III) (53), bp 62-64°C (70 mm Hg), $n_{\rm D}^{18}$ 1.4469. According to the literature: bp 128°C (760 mm Hg); $n_{\rm D}^{18}$ 1.4486 [7].

(±)-2,6-Dimethylhepta-1,5-dien-3-o1 (IV). At 0-5°, 5 g of 4-methylpent-3-enal (III) in 25 ml of tetrahydrofuran was added to a solution of prop-1-en-2-ylmagnesium bromide in 75 ml of absolute tetrahydrofuran obtained from 1.8 g of magnesium and 9 g of 2-bromopropene. The reaction mixture was stirred at room temperature for 1 h, and 50 ml of a saturated aqueous solution of ammonium chloride was added. The solvent was driven off in a rotary evaporator, the organic layer was separated off, and the aqueous layer was extracted with ether $(4 \times 30 \text{ ml})$. The combined ethereal extract was washed with saturated sodium bicarbonate solution. After the solvent had been eliminated, vacuum distillation gave 5.0 g (70%) of (\pm) -2,6-dimethylhepta-1,5-dien-3-o1(IV)(70%), bp 83-84°C (15 mm Hg), np¹⁷ 1.4640. According to the literature: bp 70-71°C (13 mm Hg), np¹⁵ 1.4647 [5]. PMR spectrum (δ , ppm): 1.6 s (3H, CH₃), 1.67 s (8H, 2CH₃, CH₂), 1.9-2.3 m (2H, CH, OH): 3.8 t (1H, CH, J = 6 Hz), 3.8 t (1H, CH, J = 6 Hz), 4.5-5.4 m (3H, 3CH).

<u>The acetate of (±)-2,6-dimethylhepta-1,5-dien-3-ol (I)</u> was obtained from (±)-2,6-dimethylhepta-1,5-dien-3-ol (IV) and acetic anhydride in pyridine [5]. Yield 80%, bp 55-56°C (3 mm Hg), n_D^{17} 1.4481. According to the literature: bp 68-70°C (15 mm Hg), n_D^{25} 1.4400 [5]. PMR spectrum (δ , ppm): 1.6 s (3H, CH₃), 1.7 s (8H, 2CH₃, CH₂), 1.9 s (3H, CH₃), 2.27 t (1H, CH, J = 6 Hz), 4.7-5.6 m (3H, 3CH).

SUMMARY

The acetate of (+)-2,6-dimethylhepta-1,5-dien-3-ol - the racemic form of the sex pheromone of the Comstock mealybug - has been obtained in three stages from trans-2-(1-hydroxy-1methylethyl)-1-methoxycyclopropane with an overall yield of 30%.

LITERATURE CITED

- 1. K. Mori and H. Ueda, Tetrahedron, <u>37</u>, No. 15, 2581 (1981).
- B. A. Bierl-Leonhardt, D. S. Moreno, M. Schwass, H. S. Foruter, and J. R. Plimer, J. Chem. Ecol., No. 4, 689 (1982).
- 3. P. Baeckstrom, F. Bjorkling, H. E. Hogberg, and T. Norin, Acta Chem. Scand., <u>38</u>, 779 (1984).
- 4. Yu. B. Kal'yan, M. Z. Krimer, V. A. Smit, A. M. Moiseenkov, and A. I. Lutsenko, Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Khim., No. 9, 2082 (1985).
- 5. M. Uchida, K. Nakagawa, T. Nogishi, S. Asano, and K. Mori, Agric. Biol. Chem., <u>45</u>, No. 2, 369 (1981).

6. O. G. Kulinkovich, I. G. Tishchenko, and V. L. Sorokin, Zh. Org. Khim., <u>21</u>, 1663 (1985).

7. M. Jullia and G. L. Thuillier, Bull. Soc. Chim. Fr., No. 2, 719 (1966).